







Great

## ORIENT CEMENT LIMITED Chittapur, Karnataka

Team Member:

- Santosh Kumar Sharma- AVP- Operations
- P Murali Mohan Raju- Sr. Manager Process

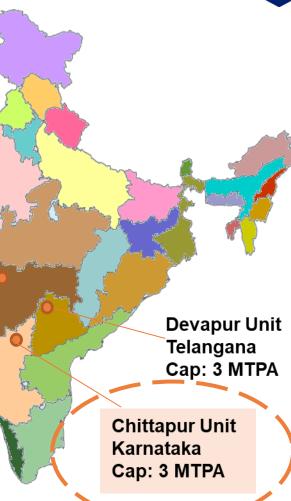


#### **COMPANY PROFILE**



# Orient Cement is operating 3 Cement Plants in India:

- Integrated Plant Devapur, Telangana
- Cement Grinding Unit Jalgaon, Maharashtra
- Integrated Plant Chittapur, Karnataka


#### Overall Capacity of Orient Cement is 8.0 MTPA.

#### Plant is certified with IMS:

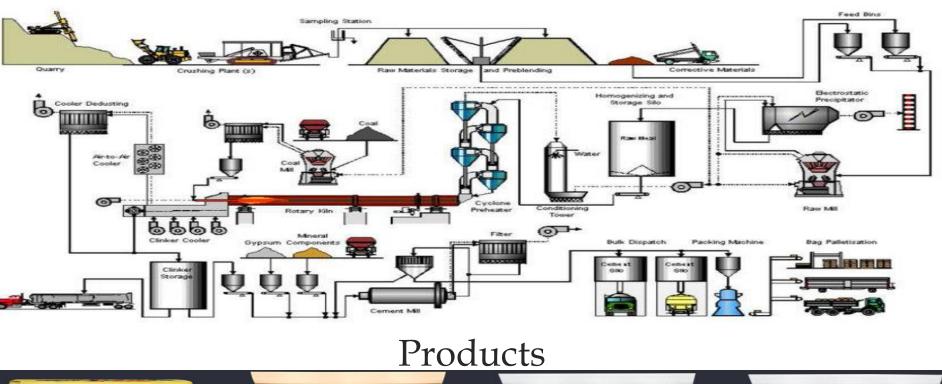
- QMS 9001 : 2015
- EMS 14001 : 2015
- OHSAS 18001 : 2007
- EnMS 50001 : 2018
- FMS 41001 : 2018
- Member of CSI (WBCSD)
- Green Pro Certified by Cll
- Member of GCCA

(Global cement & concrete association)

Jalgaon-Maharastra Cap: 2 MTPA






#### CEMENT PROCESS & PROCUCT DETAILS

Great Place To Work。 Certified

INDIA

43 Grade(OPC)

Process





53 Grade(OPC)

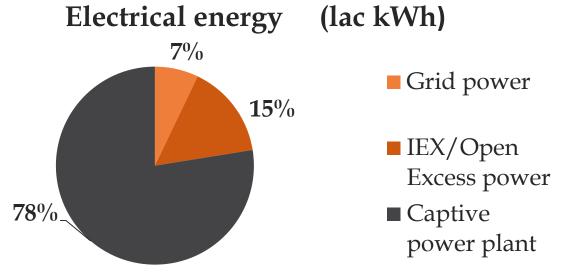




#### ✓ Plant Location

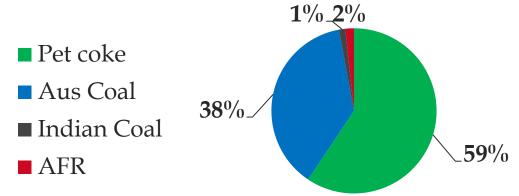
- : Itga (V), Chittapur (Tq) ,Gulbarga (Dist.) Karnataka.
- ✓ Commercial Production : Sep 2015
- ✓ Clinker : 2MTPA
- ✓ Cement : 3MTPA
- ✓ CPP : 45MW
- ✓ Plant & Colony : 266 Ha
- ✓ Mines : 519 Ha
- ✓ Green Belt

: 256644 Saplings (Till 31<sup>st</sup> March 2021)






## Energy Consumption Overview

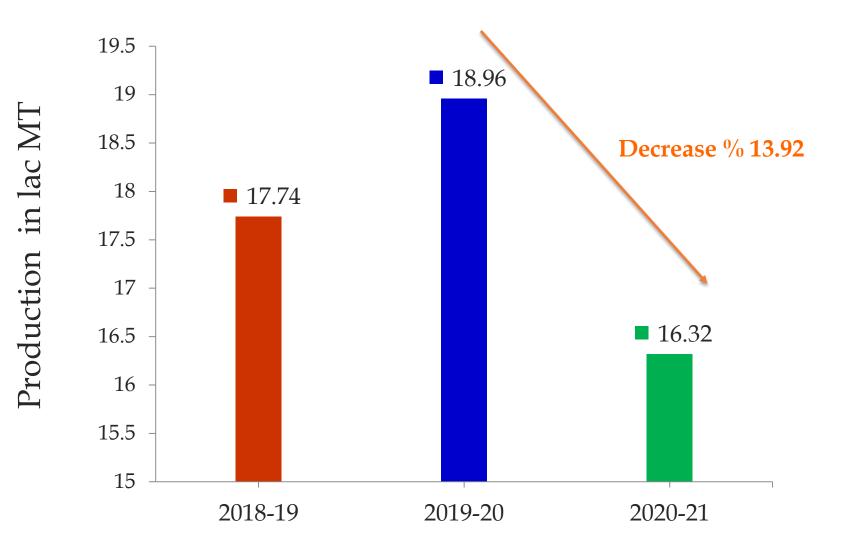



• Electrical Energy consumption – kWh FY 2020-2021



• Thermal energy consumption Kcal FY 2020-2021



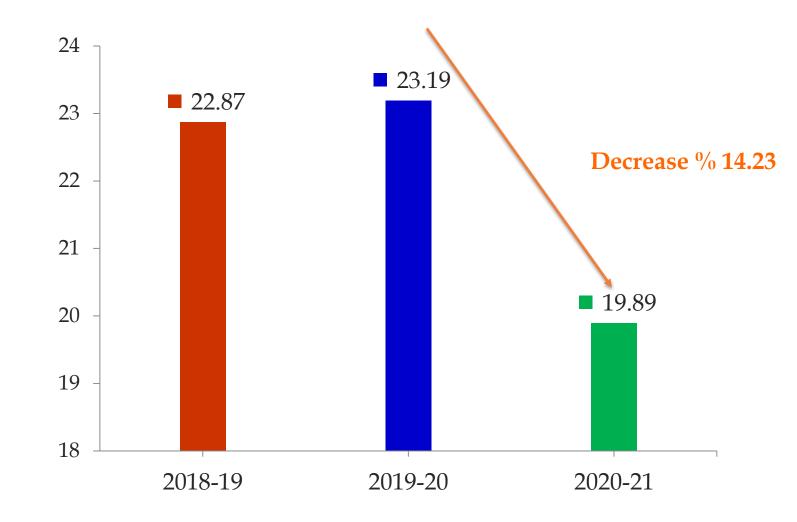





## **IMPACT OF COVID 19**



## Production of Clinker



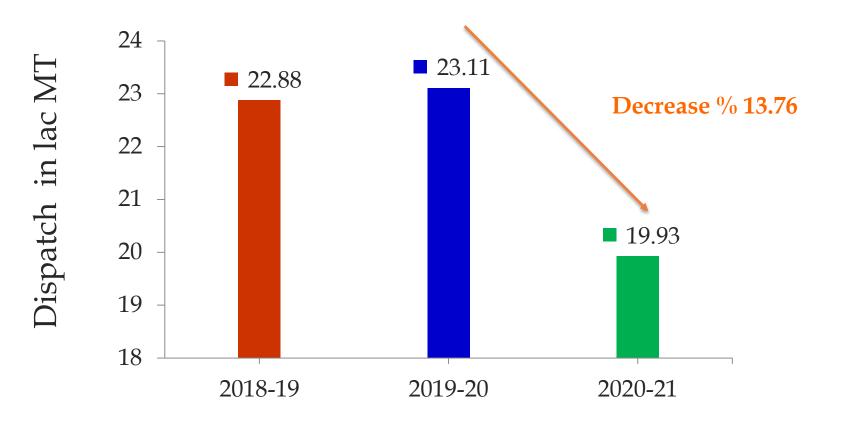


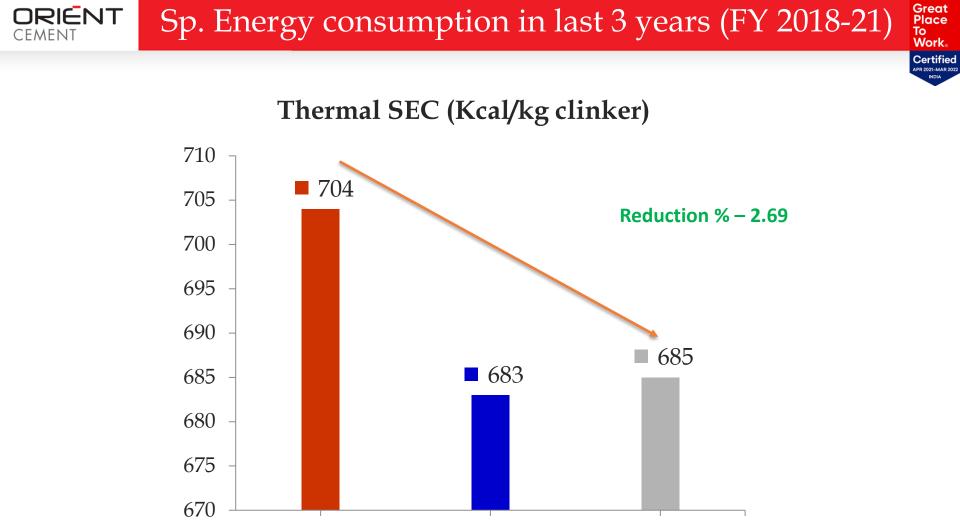

## **IMPACT OF COVID 19**



## Production of Cement




Production in lac MT




## **IMPACT OF COVID 19**



## Dispatch of Cement





2019-20

2020-21

\* This include number of heat up , Alternative fuel utilization & pet coke fuel. \* Number of starts/stops as per market demand due to Covid 19

2018-19

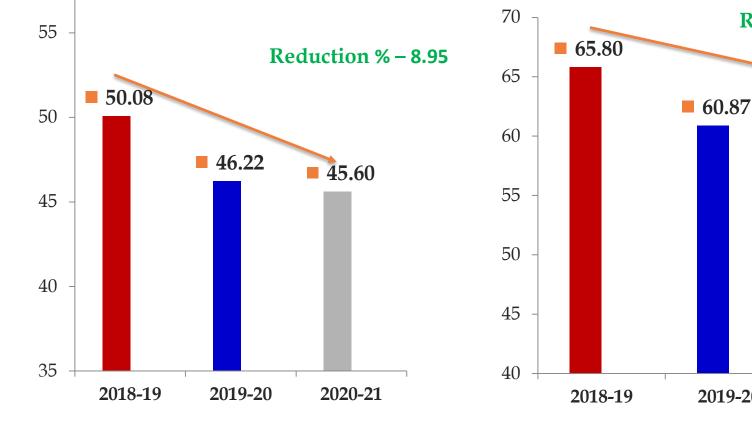
#### Sp. Energy consumption in last 3 years (FY 2018-21)





Up to Clinker (KW/MT of Clinker)

ORIENT


CEMENT

**Overall Cement** (KW/MT of Cement)

**Reduction** % – 5.10

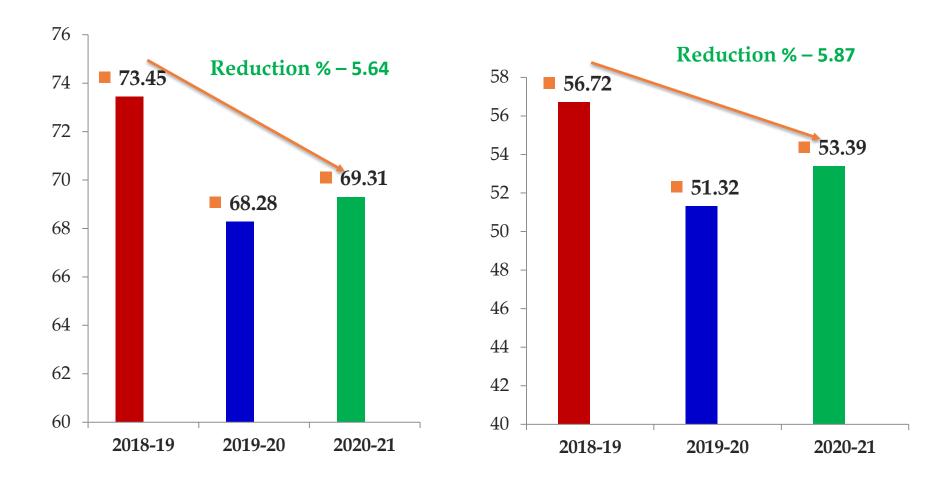
61.65

2020-21



Power increase due to no of start stops increases. Change over of products frequency also increases due to packing plant incoming vehicles uncertainty

2019-20


## **DRIENT** Sp. Energy consumption in last 3 years (FY 2018-21)



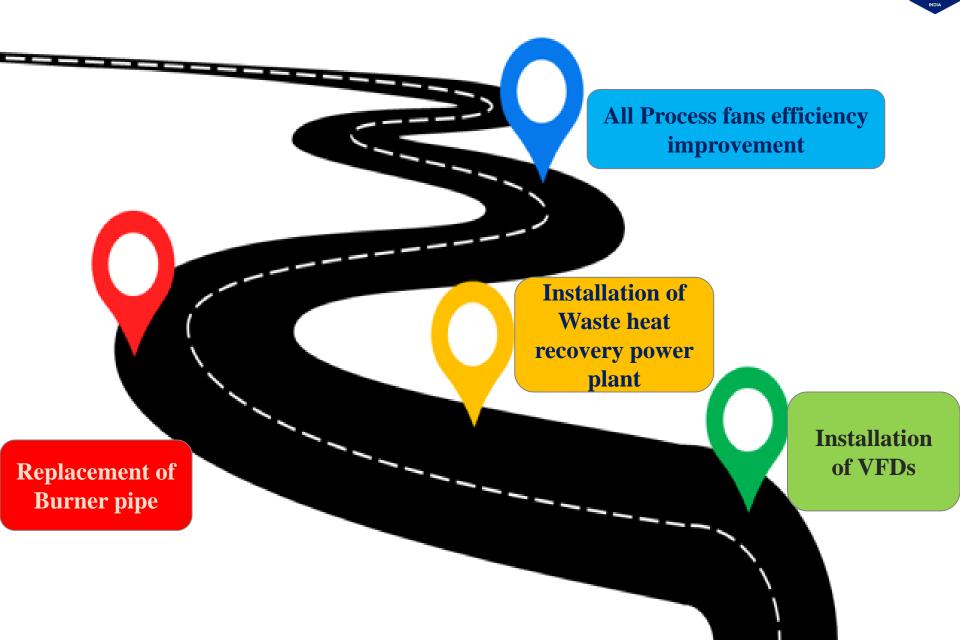
#### **Electrical SEC**

OPC (KW/MT of Cement)

PPC (KW/MT of Cement)








| Specific Energy<br>Consumption | National<br>Benchmark | Yearly Best Figures<br>of OCL, Chittapur | SEC on<br>2020-21 |
|--------------------------------|-----------------------|------------------------------------------|-------------------|
| Thermal - Kcal/Kg<br>Clinker   | 676                   | 683 (FY 2019-20)                         | 685               |
| Electrical-kWh/T of<br>Clinker | 42.59                 | 45.60 (FY 2020-21)                       | 45.60             |
| Electrical-kWh/T of<br>Cement  | 56.10                 | 60.87 (FY 2019-20)                       | 61.65             |

**\*** The power achieved based on 50-50% of OPC & PPC products







#### CEMENT Major Energy Conservation Projects Planned 2021-22



|            |                                                                         |                                                   |                                         |                                   | <b>•</b>                                |
|------------|-------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|
| Sl.<br>No. | Energy<br>Conservation<br>Projects                                      | Electrical<br>energy savings<br>(In Lakhs<br>kWh) | Thermal<br>savings<br>(Million<br>kCal) | Investments<br>(Rs in<br>Million) | Annual<br>Savings<br>(Rs in<br>Million) |
| 1          | Optimization of Kiln<br>Coal transportation<br>phase density            | 1.92                                              |                                         | 0.10                              | 6.08                                    |
| 2          | Improve Cooler<br>Recuperation<br>Efficiency from 61.7 %<br>to 65.2 %   |                                                   | 23.76                                   | NIL                               | 23.02                                   |
| 3          | Cement Mill 1 Fan<br>Efficiency<br>improvement from<br>76.3 % to 85.4 % | 6.45                                              | NIL                                     | 0.10                              | 4.87                                    |
| 4          | Cement Mill 2 Fan<br>Efficiency<br>improvement from<br>75.6 % to 85.4 % | 5.10                                              | NIL                                     | 0.10                              | 3.85                                    |

#### ORIENT CEMENT Major Energy Conservation Projects Planned 2021-22



| Sl.<br>No. | Energy<br>Conservation<br>Projects                                                                                 | Electrical<br>energy savings<br>(In Lakhs kWh) | Thermal<br>savings<br>(Million<br>kCal) | Investments<br>(Rs in<br>Million) | Annual<br>Savings<br>(Rs in<br>Million) |
|------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|
| 5          | Improve cooler ESP<br>fan efficiency from<br>40.5% to 86.15% by<br>replacing with new<br>impeller                  | 9.40                                           | NIL                                     | 0.50                              | 7.10                                    |
| 6          | Replacement of all<br>old and inefficient<br>lighting system by<br>Energy efficient<br>Lighting system i.e.<br>LED | 4.51                                           | NIL                                     | 4.35                              | 3.41                                    |



| Year       | No of<br>Projects | Investments<br>(INR Million) | Savings<br>(INR Million) |
|------------|-------------------|------------------------------|--------------------------|
| FY 2018-19 | 12                |                              | 106.80                   |
| FY 2019-20 | 07                | 9.2                          | 34.90                    |
| FY 2020-21 | 09                | 1.18                         | 25.50                    |



### Energy Saving Projects Implemented FY 2018-19

Great Place To Work. Certified APR 2021-MAR 2022 INDIA

| Energy conservation project                  | Electrical<br>energy<br>savings | Thermal<br>savings | Total<br>Savings | Investment       | Pay back in<br>months |
|----------------------------------------------|---------------------------------|--------------------|------------------|------------------|-----------------------|
|                                              | In lac kWh                      | Ton/yr             | Rs in<br>Million | Rs in<br>Million | montins               |
| Optimization of fuel & Raw<br>mix            | -                               | 923.08             | 8.3              | -                | Immediate             |
| Optimization of Bag filters in<br>Packing    | 11.2                            | -                  | 8.4              | -                | Immediate             |
| Optimization of Raw mill circuit bag filters | 2.37                            | -                  | 1.8              | -                | Immediate             |
| Optimization of Bag filter in fly ash silo   | 0.68                            | -                  | 0.5              | -                | Immediate             |
| Optimization of fly ash compressor           | 3.6                             | -                  | 2.7              | -                | Immediate             |





| Energy conservation project                                         | Electrical<br>energy<br>savings | Thermal<br>savings | Total<br>Savings | Investmen<br>t   | Pay back<br>in months |
|---------------------------------------------------------------------|---------------------------------|--------------------|------------------|------------------|-----------------------|
|                                                                     | In lac kWh                      | Ton/yr             | Rs in<br>Million | Rs in<br>Million |                       |
| Optimization of OK mill (Cement mill) fan flow                      | 2.7                             | -                  | 2.3              | -                | Immediate             |
| Modification of OK mill (Cement mill) grinding aid nozzle spray     | 36                              | -                  | 27               | -                | Immediate             |
| Optimization of cooler vent fan<br>flow with kiln hood pressure PID | 6                               | -                  | 4.5              | -                | Immediate             |
| Optimization of Preheater fan<br>flow with Outlet pressure PID      | 18                              | 615.38             | 19               | -                | Immediate             |
| Optimization of Raw mill (roller press) fan flow                    | 30                              | -                  | 22.5             | -                | Immediate             |





| Energy conservation project                    | Electrical<br>energy<br>savings | Thermal<br>savings | Total<br>Savings | Investment    | Pay back<br>in months |
|------------------------------------------------|---------------------------------|--------------------|------------------|---------------|-----------------------|
|                                                | In lac kWh                      | Ton/yr             | Rs in<br>Million | Rs in Million |                       |
| Optimization of Raw mill<br>(roller press) gap | 10                              | -                  | 7.5              | -             | Immediate             |
| Optimization of crusher secondary motor load   | 3                               | -                  | 2.3              | -             | Immediate             |



Great Place To Work. Certified APR 2021-MAR 2022

| Energy conservation project                                                                             | Electrical<br>energy savings | Thermal<br>savings |                  | Investment       | Pay back in<br>months |
|---------------------------------------------------------------------------------------------------------|------------------------------|--------------------|------------------|------------------|-----------------------|
|                                                                                                         | In lac kWh                   | Ton/yr             | Rs in<br>Million | Rs in<br>Million |                       |
| Heat resistance paint on preheater and cyclone area                                                     | _                            | 1337               | 10               | 4.2              | 5.04                  |
| Optimize lighting voltage in<br>line                                                                    | 0.1                          | -                  | 0.7              | -                | Immediate             |
| Reduction in the generating<br>pressure of Post clinker<br>section compressors from 7.2<br>bar to 6 bar | 3                            | -                  | 1.8              | -                | Immediate             |





| Energy conservation project               | Electrical<br>energy<br>savings | Thermal<br>savings | Total<br>Savings | Investment    | Pay<br>back in |
|-------------------------------------------|---------------------------------|--------------------|------------------|---------------|----------------|
|                                           | In lac kWh                      | Ton/year           | Rs in<br>Million | Rs in Million | months         |
| Optimization of packing plant operation   | 10                              |                    | 7                | 1             | 1.71           |
| Compressor air leakages in Pre<br>clinker | 3                               | 21                 | 2.4              | 1             | 5              |
| Optimisation of Raw mill fans             | 4                               |                    | 2.4              | 1             | 5              |
| Optimization of coal firing blowers       | 12                              | 500                | 10.6             | 2             | 2.6            |





| Energy conservation                                               | Electrical<br>energy savings | Thermal<br>savings | Total<br>Savings | Investment       | Pay back  |
|-------------------------------------------------------------------|------------------------------|--------------------|------------------|------------------|-----------|
| project                                                           | In lac kWh                   | Ton/year           | Rs in<br>Million | Rs in<br>Million | in months |
| Compressor's discharge<br>pressure reduced from 6.0<br>to 5.8 bar | 2.31                         | _                  | 18.84            | -                | Immediate |
| Idle running of material handling section reduced                 | 0.12                         | -                  | 0.1              | -                | Immediate |
| Applied heat resistance paint in kiln hood                        | -                            |                    | 1.50             | 0.236            | 1.89      |
| Changed HPSV lamps to<br>LED lamps                                | 0.52                         | -                  | 0.42             | 0.80             | 22.86     |





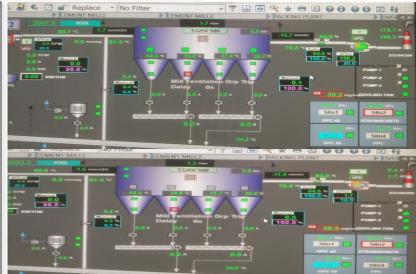
| Energy conservation project                                             | Electrical<br>energy<br>savings | Thermal<br>savings | Total<br>Savings | Investment       | Pay back in |
|-------------------------------------------------------------------------|---------------------------------|--------------------|------------------|------------------|-------------|
|                                                                         | In lac kWh                      | Ton/year           | Rs in<br>Million | Rs in<br>Million | months      |
| Raw mill product residue<br>optimized from 3.3 to 3.8% on<br>212 micron | 3.70                            | -                  | 3.02             | -                | Immediate   |
| Cement mill bag house<br>heaters idle running hours<br>reduced          | 0.47                            | -                  | 0.38             | -                | Immediate   |
| Idle running of cooler ESP<br>transport reduced                         | 0.11                            | -                  | 0.09             | -                | Immediate   |
| Raw mill bag house idle<br>running reduced                              | 0.55                            | -                  | 0.45             | -                | Immediate   |
| HRB discharge Bag filter fan<br>changed to VFD                          | 0.86                            | -                  | 0.70             | 1.186            | 2.57        |





#### Applied heat resistance paint in kiln hood

| Note on cross-checking:-     | Clinker Prod | 7000     | TPD       |            |            |                 |
|------------------------------|--------------|----------|-----------|------------|------------|-----------------|
| Description                  | Area corr.   | Avg temp | Radiation | Convection | Heat L     | oss Total       |
|                              | [m2]         | [Deg. C] | [kcal/h]  | [kcal/h]   | [kcal/h]   | kcal/kg clinker |
| Before painting              | 347.2        | 146      | 303071    | 208002     | 511073     | 1.752           |
| After painting               | 347.2        | 100      | 143848    | 106861     | 250708     | 0.860           |
| Savings in delta             |              | 46       |           |            | 260364     | 0.893           |
| Total heat saved in 230 days |              |          |           |            | 1437211220 |                 |
| Heat saved in Million kcal   |              |          |           |            | 1437       |                 |


#### Cement mill bag house heaters idle running hours reduced

#### Background:

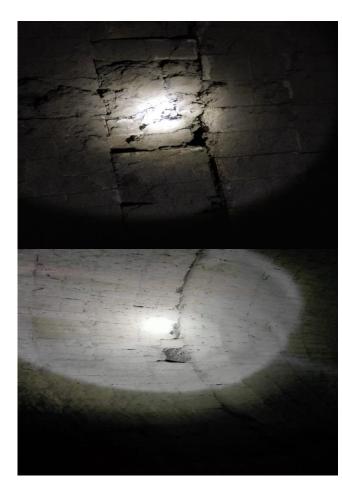
- Cement mill bag house hoppers heaters running continuously even after stoppage of mill.
- No need of heaters if mill is not running.

## **Conclusions:**

The savings thus achieved is about 192kWh per day.
Each Mill is having four hoppers and each hoppers is having four heaters and each heater is taking 2kWh, so total saving is 2X4X4= 32 units per hour






## Innovative Project Implemented FY 2020-21

Great Place To Work。 Certified APR 2021-MAR 202

Kiln Brick lining Life

#### **Challenge Faced:**

- Damage of kiln bricks at outlet retainer position due to skewness
- Crushing of bricks due to point load due to kiln outlet retainer deformation
- High number of start stops due low market and covid 19
- If manpower call from other location, there was always threat for spread of contagious Covid 19





## Innovative Project Implemented FY 2020-21

Kiln Brick lining Life



### **Solutions Implemented:**

- Installation of SS plate after kiln outlet retainer for avoid point load on bricks
- Installation of zig-zag lining by 300 mm length bricks along with normal 200 mm bricks to avoid skewness of bricks
- \* Compatibility of raw mix and fuel mix for reduction in feed variation
- ✤ Optimum liquid viscosity

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P# State       |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The Base Lage  | 5 ANN |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E MANBTYO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              |       | Same Provent | and the second sec |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DALBURN S      |       |              | 19 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Buttering a    |       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - A Dalmia B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |       | i st y       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Charles !!     |       |              | - Ken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A Statistical Barrier | SP Distriction |       | nd - A       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1350 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Selectors and  |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S Dalmin g<br>M DALBURN S<br>M BATEL 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L Batting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S Nanarya 65   |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mungiva D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| an Land a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 miles 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MINATIO        | 1 12  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Davinia B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A STORE        |       | 1 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DALBURN        |       | 1 day        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AI QUAD CAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |       | 2020/        | 9/3 14:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

- \* Refractory selection according to chemistry
- \* Slow heat up of Kiln during light up time
- \* PID installed for Kiln turning schedule
- \* Front side air blasters stopped to avoid secondary air fluctuations and improve consistency in burner flame



### Innovative Project Implemented FY 2020-21

Kiln Brick lining Life



#### **Results Achieved:**

## Kiln refractory life of 649 Calendar days and 440 Kiln Running days





#### Utilisation of Renewable Sources

Great Place To Work. Certified AR2 2021-MAR 2022

#### Electrical Renewable Sources

| Year       | Technology<br>(electrical) | Type of<br>Energy       | Onsite/<br>Offsite | Installed<br>Capacity<br>(MW) | Generation<br>2019-2020<br>(million<br>kWh) | % of<br>overall<br>electrical<br>energy |
|------------|----------------------------|-------------------------|--------------------|-------------------------------|---------------------------------------------|-----------------------------------------|
| FY 2018-19 | Wind turbines              | Wind<br>Energy          | Offsite            | -                             | 5.2                                         | 3.49                                    |
| FY 2019-20 | Wind turbines              | Wind<br>energy          | Offsite            | -                             | 12.7                                        | 8.8                                     |
|            | Photo voltaic              | Solar                   | Offsite            | -                             | 4.4                                         | 3.05                                    |
|            | Hydro electric<br>power    | Small<br>Hydro<br>Plant | Offsite            | -                             | 3.9                                         | 2.7                                     |
| FY 2020-21 | Wind turbines              | Wind<br>Energy          | Offsite            | -                             | 9.2                                         | 7.24                                    |
|            | Photo voltaic              | Solar                   | Offsite            | -                             | 7.42                                        | 5.84                                    |



#### Utilisation of Renewable Sources

Great Place To Work. Certified APR 2021-MAR 2022

#### Thermal Renewable Sources

| Year       | Technology<br>(thermal) | Type of<br>Energy | Installed<br>Capacity<br>(million<br>kCal) | Usage<br>(million<br>kCal) | % of overall<br>thermal<br>energy |
|------------|-------------------------|-------------------|--------------------------------------------|----------------------------|-----------------------------------|
| FY 2018-19 | Combustion              | Alternative Fuel  | -                                          | 42.80                      | 3.43                              |
| FY 2019-20 | Combustion              | Alternative Fuel  | -                                          | 44.15                      | 3.41                              |
| FY 2020-21 | Combustion              | Alternative Fuel  | -                                          | 18.90                      | 1.71                              |





|       |               | AFR Usage for the FY 2018-19 |                  |                                      |                                      |  |
|-------|---------------|------------------------------|------------------|--------------------------------------|--------------------------------------|--|
| SI No | Waste Details | Quantity<br>(MT/year)        | GCV<br>(kCal/kg) | Heat value<br>(million<br>kcal/year) | Waste as percentage<br>of total fuel |  |
| 1     | Dolachar      | 4279                         | 2615             | 11190                                | 0.89                                 |  |
| 2     | Carbon black  | 3796                         | 5852             | 22214                                | 1.77                                 |  |
| 3     | Pharma waste  | 2192                         | 2551             | 5592                                 | 0.44                                 |  |
| 4     | Liquid AFR    | 1652                         | 2150             | 3552                                 | 0.28                                 |  |





|       |               | AFR Usage for the FY 2019-20 |                  |                                      |                                   |  |
|-------|---------------|------------------------------|------------------|--------------------------------------|-----------------------------------|--|
| SI No | Waste Details | Quantity<br>(MT/year)        | GCV<br>(kCal/kg) | Heat value<br>(million<br>kcal/year) | Waste as percentage of total fuel |  |
| 1     | Agro waste    | 917                          | 3342             | 3065                                 | 0.23                              |  |
| 2     | Dolachar      | 1502                         | 2298             | 3452                                 | 0.26                              |  |
| 3     | Carbon black  | 3879                         | 5596             | 21707                                | 1.67                              |  |
| 4     | Pharma waste  | 2287                         | 2528             | 5782                                 | 0.44                              |  |
| 5     | Liquid AFR    | 3818                         | 2656             | 10141                                | 0.78                              |  |





|       |               | AFR Usage for the FY 2020-21 |                  |                                      |                                   |  |
|-------|---------------|------------------------------|------------------|--------------------------------------|-----------------------------------|--|
| SI No | Waste Details | Quantity<br>(MT/year)        | GCV<br>(kCal/kg) | Heat value<br>(million<br>kcal/year) | Waste as percentage of total fuel |  |
| 1     | Agro waste    | 1978                         | 2752             | 5443                                 | 0.48                              |  |
| 2     | Carbon black  | 36                           | 5621             | 202                                  | 0.02                              |  |
| 3     | Pharma waste  | 1208                         | 2413             | 2915                                 | 0.26                              |  |
| 4     | Liquid AFR    | 3134                         | 2770             | 8681                                 | 0.78                              |  |
| 5     | Plastic Waste | 42                           | 7566             | 318                                  | 0.03                              |  |



| Year    | Name of Alternative<br>raw material | Name of material gets replaced | Quantity used<br>(MT/ Year) |
|---------|-------------------------------------|--------------------------------|-----------------------------|
| 2018-19 | Red mud                             | laterite                       | 13110                       |
| 2019-20 | Red mud                             | laterite                       | 49090                       |
| 2020-21 | Red mud                             | laterite                       | 36808                       |

Certified APR 2021-MAR 2022 INDIA



## Learning from CII Energy Award 2020



## Optimisation of Cooler ESP transport Circuit

## Background:

- The 12 Rotary air locks were running continuously in cooler ESP transport circuit.
- It was noticed on site observation that most of the time there is idle running.
- Hence the circuit is optimized to run continuously first 04 compartment's RAL, remaining 08 compartments rotary air lock to run 20min after every 40min stoppage without affecting the process.

## **Conclusions:**

- The savings thus achieved is about 47kWh per day.
- The reduced running hours will have the increased service life of equipment's.

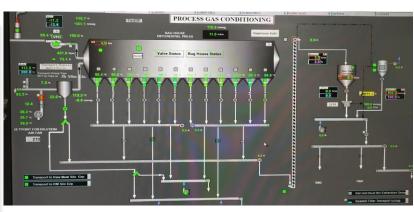


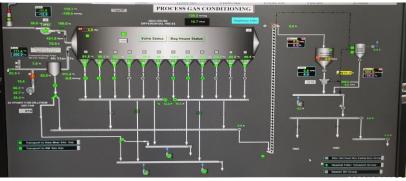


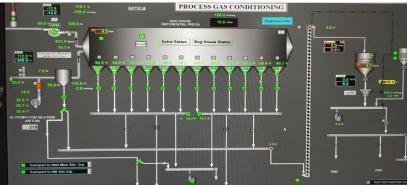
## Learning from CII Energy Award 2020



## Optimisation of Raw mill bag house transport Circuit


## **Background:**


- The 12 Rotary air locks and 2 drag chains were running continuously.
- It was noticed on site observation that most of the time there is idle running.
- Hence the circuit is optimized to run 30min after every 60min stoppage without affecting the process.


## **Conclusions:**

 The savings thus achieved is about 238kWh per day.

•The reduced running hours will have the increased service life of equipment's.









#### **GHG** Inventorisation



## □ Information on GHG Inventorisation and public disclosure

| Direct CO <sub>2</sub> emissions         | UOM        | Values    |
|------------------------------------------|------------|-----------|
| Total CO <sub>2</sub> from raw materials | [t CO2/yr] | 8,79,961  |
| Total CO2 from fossil-based kiln fuels   | [t CO2/yr] | 1,05,105  |
| Total CO2 from non-kiln fuels            | [t CO2/yr] | 53,717    |
| Total direct CO2: all sources            | [t CO2/yr] | 10,38,783 |

## $\Box Scopes for reduction of CO_2$

- Maximum usage of AFR.
- Reduction of clinker to cement ratio.
- Optimization of specific power and heat consumption.
- Installation of Waste heat recovery plant
- Supply chain
- Maximize the usage of PI and other additives





### **GHG** Inventorisation

# **Target for CO2 emission reduction and action plan :**

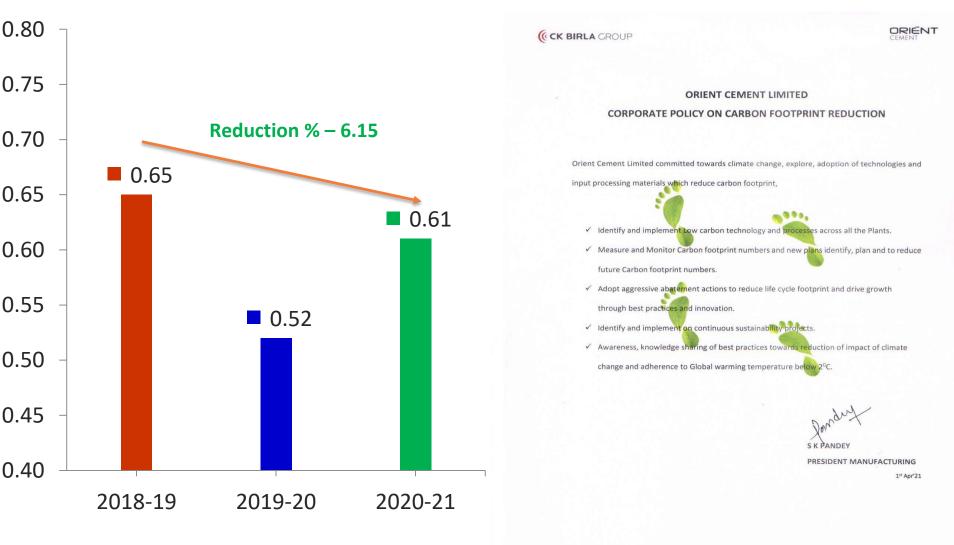
- Planning for installation of waste heat recovery power plant
- PPC dispatch increased from 45% to 50%
- 34.5% fly using in PPC and 15.01 in SC
- PI usage

### **Absolute Emissions**



| Year                                     | UOM                | 2018-19 | 2019-20 | 2020-21 |
|------------------------------------------|--------------------|---------|---------|---------|
| Suspended<br>Particulate<br>Matter (SPM) | mg/Nm <sup>3</sup> | 21.06   | 19.45   | 22.36   |
| Oxides of<br>Nitrogen (NO <sub>x</sub> ) | mg/Nm <sup>3</sup> | 276.63  | 298.08  | 394.63  |
| Oxides of<br>Sulphur(SO <sub>x</sub> )   | mg/Nm <sup>3</sup> | 44.34   | 33.72   | 9.13    |



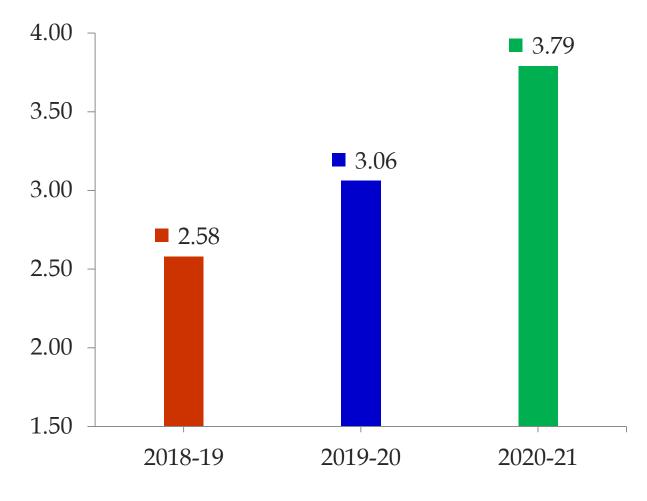

Great Place



#### **Carbon Footprint**

Great Place To Work。 Certified

#### Carbon footprint ton of CO<sub>2</sub>/MT of Cement




\*Direct equivalent CO<sub>2</sub> emission for MT of cement



#### Water Footprint/Accounting





Consistently Water positive during last 3 years



### Green Supply Chain Management Policy

ORIENT

CEMENT

Great Place To Work. Certified APR 2021-MAR 2022 INDIA

#### (CK BIRLA GROUP

#### ORIENT CEMENT LIMITED

#### GREEN PROCUREMENT POLICY

Orient Cement Limited ensures & practice while purchasing Products & Services, we will assess potential environment impacts and associated impacts While procuring our products & services, we always ensure that less impact on Environment and manufactured with less harmful materials. While sourcing of Raw materials, ensure to from nearby sources to reduce travel distance of vehicles which minimise the carbon footprint. Ensure and follow procurement of Energy efficiency Electrical appliances.

#### We committed to:

- > Continuous creation of awareness on Environment and its impacts.
- Measures towards reduction of foot print by Energy efficiency appliances, less harmful materials and lower water consumption.
- Procurement and sourcing of Raw materials from nearby sources to reduce vehicle movement/diesel consumption and encourage local state holders.
- Procurement of Energy efficiency equipment's.
- Green supply chain with transporters on Raw paterials and increase the bulk cement sale.

<u>a-</u>

- Procure products which are Recyclable, Compostable, Reusable or biodegradable packaging.
- Purchase & replacement of lamps that have low energy usage and use lighting controls to reduce electrical consumption.

#### SATYABRATA SHARMA

PLANT HEAD CHITTAPUR



### Initiatives taken in Green Supply Chain



- Engage local vendors for sourcing of raw materials.
- Procurement of energy efficiency & star rated electrical appliances.
- Procurement of recyclable, re-usable and biodegradable materials.
- Consume recycled water for internal gardening and dust suppression.
- Usage of Rain harvesting water rather outsource.
- Installation of LED lights.
- Installation of RFID at mines and packing weigh bridge area.
- Transportation of coal and clinker via wagon.
- Adoption of automation technologies.
- Hiring vehicles which are efficient and less diesel consumption



### Initiatives taken in Green Supply Chain

Great Place To Work。 Certified

Reverse logistics for all raw material vehicles

**ORIENT** 

- Reverse logistics for Fly ash bulkers
- Coal rake again using for clinker sale
- Colony wastage incinerating in our Kiln
- Truck yard concreating done for quick movement
- TAT reduced by concreating of all roads for truck tipplers
- Increased cement transportation by Rail



#### Additive tippler



|       |             | 2020-21     |             |               |  |             | 2021        |           |           |
|-------|-------------|-------------|-------------|---------------|--|-------------|-------------|-----------|-----------|
| MONTH | RAIL<br>QTY | ROAD<br>QTY | RAI<br>%    |               |  | RAIL<br>QTY | ROAD<br>QTY | RAIL<br>% | ROAD<br>% |
| Apr   | 57108.30    | 2614.8      | 4%          | 5 <b>96</b> % |  | 132009.7    | 33172.65    | 20%       | 80%       |
| May   | 137582.25   | 21642.35    | 149         | % <b>86</b> % |  | 135369.2    | 26133       | 16%       | 84%       |
| Jun   | 95993.29    | 8139.75     | 8%          | 5 <b>92</b> % |  | 125929.6    | 40643.65    | 24%       | 76%       |
| Jul   | 117924.67   | 14872.1     | 119         | % <b>89</b> % |  | 127298.4    | 45284.55    | 26%       | 74%       |
| Aug   | 108874.64   | 14870.1     | 129         | % <b>88</b> % |  |             |             |           |           |
| Sep   | 126537.19   | 20364.4     | 149         | % <b>86</b> % |  |             |             |           |           |
| Oct   | 138217.62   | 37890.45    | 229         | % <b>78</b> % |  |             |             |           |           |
| Nov   | 126227.24   | 31748.8     | <b>20</b> % | % <b>80</b> % |  |             |             |           |           |
| Dec   | 160874.74   | 46602.35    | 229         | % <b>78</b> % |  |             |             |           |           |
| Jan   | 170522.28   | 42613.75    | <b>20</b> 9 | % <b>80</b> % |  |             |             |           |           |
| Feb   | 180871.95   | 52687.35    | 239         | 6 77%         |  |             |             |           |           |
| Mar   | 208502.75   | 67387.6     | 249         | % <b>76</b> % |  |             |             |           |           |
| Total | 1629236.9   | 2 361433.80 |             |               |  | 520607      | 145233.9    |           |           |



Green Supply Chain Project



# Project Sabse Tej

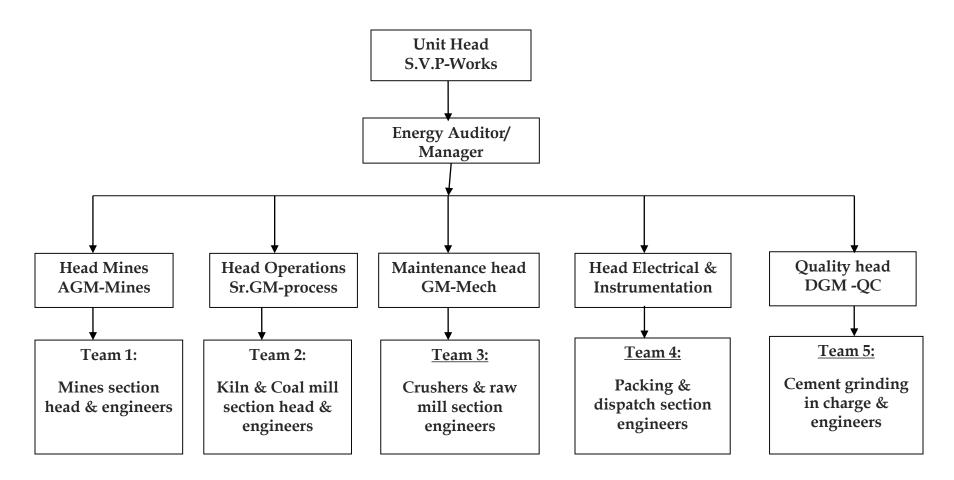
#### Scope:

Double transport/handling reduction for 50 kilometres radius

#### **Project Implemented: Sabse Tej**

Normally lots of customers required cement (Small quantity) who are nearer than our authorised dealer. Through this project we are supplying cement directly to customer with consulting our dealer by small size of vehicles. This project saves lots of double transportation and double loading & unloading of Cement

#### SAB SE TEJ DELIVER DISPATCH


| молтн | DISPATCH<br>QTY.<br>2020-2021 | DISPATCH<br>QTY.<br>2021-2022 |
|-------|-------------------------------|-------------------------------|
| Apr   | -                             | 1,528.95                      |
| May   | -                             | 1,337.95                      |
| Jun   | -                             | 1,198.85                      |
| Jul   | _                             | 2,151.75                      |
| Aug   | -                             |                               |
| Sep   | -                             |                               |
| Oct   | 970.00                        |                               |
| Nov   | 1,059.80                      |                               |
| Dec   | 1,480.00                      |                               |
| Jan   | 1,610.00                      |                               |
| Feb   | 1,718.30                      |                               |
| Mar   | 1,970.00                      |                               |
| Total | 8808.1                        | 6217.5                        |



### **Energy Management Cell**



#### **ENERGY MANAGEMENT COMMITTEE**





### Daily Monitoring System, Use of iOT

Place То Work. Certified

Great

APR 2021-MAR 2022

- Mobile app for Real Time section wise process parameters and specific power consumption details
- Instant stoppage notification
- Day running hours and production report on



|                                                       | - WURTH IT                                                                                  |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                                                       | Tax Invoice                                                                                 |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Invoice No >                                          | WI-DTA/08-21/147                                                                            |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Invoice Date:-                                        | 09-08-2021                                                                                  |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Invoice for the Month-                                | Aug-2021                                                                                    |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Project Name>                                         | Implementation of Digital Technology for Process Fluctuation.                               |                                                       |                                                                 |  |  |  |  |  |  |  |  |  |  |  |
| Billed to Contact Details:-                           | Mr. Shivakumar                                                                              | Billed From Contact Details:-                         | Girish K. Kanawade                                              |  |  |  |  |  |  |  |  |  |  |  |
| Billed to Legal Entity:-                              | Orient Cement Limited                                                                       | Billed From Legal Entity:-                            | Wurth Information Technology India Pvt. Ltd.                    |  |  |  |  |  |  |  |  |  |  |  |
| Billed to Entity Address-                             | Village Itaga, Post Malkhed Road, Taluk Chittapur,<br>District Kalaburagi, Kamataka- 585292 | Billed from Entity Address:-                          | A / 402, GO Square, Wakad Road,<br>Kaspate Wasti, Pune – 411057 |  |  |  |  |  |  |  |  |  |  |  |
| State:-<br>GSTIN No:-<br>Billed to Contact Email id:- | Karnataka Code:29<br>29AABCO5420A1ZX<br>shivakumar@orientcement.com                         | State:-<br>GSTIN :-<br>Billed From Contact Email id:- | Maharashtra Code:27<br>27AABCW6636N12Q<br>finance@wurth-it.in   |  |  |  |  |  |  |  |  |  |  |  |

| Invoice<br>Reference      | Services Type<br>Description                    | Qty            | Currency         | Amount             | IGST             | IGST Tax Amount                      | Total Invoice Amount<br>including Tax |             |  |
|---------------------------|-------------------------------------------------|----------------|------------------|--------------------|------------------|--------------------------------------|---------------------------------------|-------------|--|
| WI-DTA/08-21/147          | Implementation of Digital<br>Technology in Pyro | 1              | INR              | <b>4,74,300.00</b> | 18%              | ₹ 85,374                             | ₹                                     | 5,59,674.00 |  |
| Amount in words           | Rupees Five Lakh Fifty Nine Thou                | isand Six Hund | red Seventy Four | Only               |                  |                                      |                                       |             |  |
| GSTIN Nos-27AABCW6636N1ZQ | PAN :-AABCW6636N                                |                |                  | SAC Code:-998313   | 3 MSME Registere | MSME Registered Entity: UDYAM-MH-264 |                                       |             |  |

|    | * Payment Terms * |                                                                                   |  |  |  |  |  |  |  |  |
|----|-------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Pa | ryment Terms      | As Per PO                                                                         |  |  |  |  |  |  |  |  |
| Pa | ryment Reference  | Please indicate the invoice number & correspondings amt in the Remittance Advice  |  |  |  |  |  |  |  |  |
| In | cidental costs    | All incidental costs relating to the remittance to be born by the Remitting Party |  |  |  |  |  |  |  |  |
| Pa | ryment            | Please arrange payment to the Bank Account below                                  |  |  |  |  |  |  |  |  |
| Pa | ryment Currency   | INR                                                                               |  |  |  |  |  |  |  |  |

| * Bank Details *             |                                                               |  |  |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Beneficiary Name             | keneficiary Name Wurth Information Technology India Pvt. Ltd. |  |  |  |  |  |  |  |  |  |
| Bank Name                    | ICICI Bank Limited                                            |  |  |  |  |  |  |  |  |  |
| Bank a/c Number 007305009953 |                                                               |  |  |  |  |  |  |  |  |  |
| IFSC code ICIC0000073        |                                                               |  |  |  |  |  |  |  |  |  |
| swift code ICICINBBCTS       |                                                               |  |  |  |  |  |  |  |  |  |
| Bank Address                 | Gulmohor park, ITI road, Aundh Pune Maharashtra, 411007       |  |  |  |  |  |  |  |  |  |
|                              |                                                               |  |  |  |  |  |  |  |  |  |
|                              | * Authorised Signatory *                                      |  |  |  |  |  |  |  |  |  |
| Name                         |                                                               |  |  |  |  |  |  |  |  |  |
| Signature                    | Wilestally stand by DAM                                       |  |  |  |  |  |  |  |  |  |
|                              | RAVI SHANKAR SHANKAR PINSALI                                  |  |  |  |  |  |  |  |  |  |
|                              | PINGALI Date: 2021.08.09                                      |  |  |  |  |  |  |  |  |  |





### Daily Monitoring System, Use of iOT



# Unmanned weigh bridge controls with mobile app

Through this unique project we can operate mining transport operations through mobile. This will gives us total limestone and other minerals consumption data vehicle wise.



Both weigh bridges



Photocell





Weigh bridge control panel



**UHF RFID Reader** 



Vehicle entry to weigh bridge



### Daily Monitoring System, Use of iOT



All Selections can be done from mobile android app through public IP to unmanned software from anywhere.

- Only authorized persons can operate
- Which product want to transport
- From which source want to load the truck
- In which destination want to dump

| Register             | Regist                     | ter              |   | Regis                   | ter               |                            | Register                |                   |   |  |  |
|----------------------|----------------------------|------------------|---|-------------------------|-------------------|----------------------------|-------------------------|-------------------|---|--|--|
| Register             | Truck Code                 | ĸ                |   | Truck Cod               | le:               |                            | Truck Code:             |                   |   |  |  |
| Truck Code:          | Product<br>Select Material |                  |   |                         | Vaterial          | Product<br>Select Material |                         |                   |   |  |  |
| Product              | Source<br>Select S         | ource            | × | Source<br>Select Source |                   |                            | Source<br>Select S      | ource             | * |  |  |
| Select Material      | Destination<br>Select D    | Product          |   | Destination             | Source            |                            | Destination<br>Select D | Destination       |   |  |  |
| Source               |                            | O LIME STONE     |   | ociect                  | O Mine Pit-1      |                            |                         | O Crusher         |   |  |  |
| Destination          |                            | O BC Soil        |   |                         | O Mine Pit-2      |                            |                         | O Low Grade Stock |   |  |  |
| Select Destination 👻 |                            | O Low Grade      |   |                         | O BC Soil Dump    |                            |                         | O Mineral Stock   |   |  |  |
| SAVE                 |                            | O Waste          |   |                         | O Low Grade Stock |                            |                         | O BC Soil Dump    |   |  |  |
|                      |                            | O MIneral Reject |   |                         | O Mineral Stock   |                            |                         | O Waste           |   |  |  |
|                      |                            | CANCEL OKAY      |   |                         | CANCEL OKAY       |                            |                         | CANCEL OKAY       |   |  |  |

### Teamwork, Employee Involvement & Monitoring

Great Place To Work。 Certified

 Collaborative atmosphere after implementation of Cross Functional Team

ORIENT

CEMENT

- Root cause analysis done by all technical functions together, not by individual
- ✓ Plant has equipped with Knowledge management system (KMS) supplied by ABB.
- ✓ The KMS has all the energy consumption data.
- Each section has individual equipment specific energy report.
- ✓ Data used for study of energy performance.
- Report will send to concern section in charges & UH.



### Teamwork, Employee Involvement & Monitoring



### **Review meeting chaired by :**

ORIENT

CEMENT

- Daily production and power report meeting is reviewed by Unit head.
- Breakdown analysis presentation by Cross functional team
- Planning of operation and maintenance.
- Environment and safety points are reviewed.

|                             |                | OR            | IENT CEME         | NT LIMIT                         | ED           |              |           |               |  |  |  |
|-----------------------------|----------------|---------------|-------------------|----------------------------------|--------------|--------------|-----------|---------------|--|--|--|
|                             |                |               |                   |                                  |              |              |           |               |  |  |  |
| Daily Product               | tion Report (  | CHITTAPU      | R                 | 27-03-2021 OCL/CHI/QC/SOP/05/F-0 |              |              |           |               |  |  |  |
|                             |                |               | Production &      | bispatch                         |              |              |           |               |  |  |  |
|                             |                | F             | Production/Receip | t                                |              | Despatch/Cor | 15.       | Cl Stock (MT) |  |  |  |
| Product                     | OP. Stock (MT) | On Date MTD   |                   | YTD                              | On Date      | MTD          | MTD YTD   |               |  |  |  |
| Clinker                     | 53,708         | 7,005         | 188,173           | 1,605,509                        | 8,614        | 188,919      | 1,620,500 | 52,962        |  |  |  |
| Cement (OPC - 53 Gr.)       | 3,850          | 4,458         | 81,328            | 672,288                          | 3,571        | 80,903       | 672,280   | 4,275         |  |  |  |
| Cement (OPC - 43 Gr.)       | 819            | 2,332         | 40,360            | 329,910                          | 1,318        | 38,742       | 330,385   | 2,437         |  |  |  |
| Cement (HS PPC) Strongcrete | 1,137          | -             | 10,918            | 72,092                           | 570          | 9,951        | 72,886    | 2,104         |  |  |  |
| Cement (PPC )               | 2,887          | 4,033         | 113,178           | 882,839                          | 4,572        | 112,850      | 883,200   | 3,215         |  |  |  |
| Total Cement                | 8,693          | 10,823        | 245,784           | 1,957,129                        | 10,030       | 242,446      | 1,958,750 | 12,031        |  |  |  |
|                             |                |               |                   |                                  |              |              |           |               |  |  |  |
|                             |                |               | Equipment Pe      | erformance                       |              |              |           |               |  |  |  |
|                             |                | Running Hours |                   | T                                | onnage Per H | lour         |           |               |  |  |  |
| Equipment Description       | Today          | MTD           | YTD               | Today                            | MTD          | YTD          | Remark    |               |  |  |  |
| LS Crusher                  | 4.67           | 246.25        | 2,229             | 1,141                            | 1,122        | 1,031        |           |               |  |  |  |
| RM 1                        | 19.33          | 521           | 4,040             | 297                              | 311          | 315          |           |               |  |  |  |
| RM 2                        | 24.00          | 392           | 3,719             | 313                              | 313          | 311          |           |               |  |  |  |
| Coal Mill                   | 20.75          | 539           | 4,919             | 38                               | 39           | 32           |           |               |  |  |  |
| KILN                        | 24.00          | 640.26        | 5,455             | 292                              | 294          | 294          |           |               |  |  |  |
| CM 1(OPC 43 Gr)             | -              | 69.32         | 573               | 0                                | 235          | 223          |           |               |  |  |  |
| CM 1(OPC 53 Gr)             | 19.83          | 305.90        | 1,591             | 225                              | 233          | 226          |           |               |  |  |  |
| CM 1 (HS PPC) Strongcrete   | -              | -             | 21                | 0                                | 0            | 190          |           |               |  |  |  |
| CM 1( PPC)                  | -              | 76.33         | 767               | 0                                | 296          | 286          |           |               |  |  |  |
| CM 2(OPC 43 Gr)             | 10.50          | 107.08        | 899               | 222                              | 224.94       | 225          |           |               |  |  |  |
| CM 2(OPC 53 Gr)             | -              | 43.75         | 1,350             | 0                                | 232.96       | 231          |           |               |  |  |  |
| CM 2 (HS PPC) Strongcrete   | -              | 59.25         | 362               | 0                                | 184.27       | 189          |           |               |  |  |  |
| CM 2( PPC)                  | 13.50          | 309.58        | 2,303             | 298.74                           | 292.61       | 288          |           |               |  |  |  |
|                             |                |               |                   |                                  |              |              |           |               |  |  |  |

# **CRIENT** Specific Power and heat Consumption report



25.08

21.20

22,12

|           |                                                       |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          | MITED .Ch  |            |            |             |
|-----------|-------------------------------------------------------|-------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|----------|------------|------------|------------|-------------|
|           |                                                       |             |         |          |          |          |          |          |          |          |          |          | SPE       | CIFIC POT | VER AND I | HEAT CON | SUMPTION   | N REPORT   | Mar-2021   |             |
|           | $\rightarrow$                                         |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
| Sr. No. 5 | Section Description / Date                            | Best<br>MTD | Targets | 1-Mar-21 | 2-Mar-21 | 3-Mar-21 | 4-Mar-21 | 5-Mar-21 | 6-Mar-21 | 7-Mar-21 | 8-Mar-21 | 9-Mar-21 | 10-Mar-21 | 11-Mar-21 | 12-Mar-21 | 13-Mar-2 | 1 14-Mar-2 | 1 15-Mar-2 | 1 16-Mar-2 | 1 17-Mar-21 |
| 1 1       | S CRUSHER                                             |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
| 1         | Production (MT)                                       | 321012      |         | 14046    | 13859    | 9080     | 13403    | 9590     | 9892     | 11263    | 13100    | 9482     | 10792     | 12819     | 9773      | 6368     | 11167      | 12868      | 3477       | 9087        |
| 1         | lunning hours                                         |             |         | 11.50    | 11.75    | 7.83     | 10.75    | 9.25     | 10.50    | 10.17    | 12.25    | 8.83     | 9.50      | 11.33     | 9.58      | 5.58     | 10.17      | 11.92      | 3.50       | 8.50        |
|           | ower Consumed ,XWh (Act+Losses)                       |             |         | 17508    | 16481    | 10474    | 14537    | 15706.96 | 15445.88 | 16939.12 | 18712    | 13061    | 13979     | 17597     | 13285     | 8565     | 16717      | 18738      | 5397       | 12661       |
|           | Production Rate (ton/hr)                              | 1173        |         | 1221.39  | 1179,49  | 1159.64  | 1246.79  | 1036.76  | 942.10   | 1107.47  | 1069.39  | 1073.84  | 1136.00   | 1131.42   | 1020.15   | 1141.22  | 1098.03    | 1079.53    | 993.43     | 1069.06     |
|           | pecific Power (kWh/ton)                               | 1.35        | 1.6     | 1.25     | 1.19     | 1.15     | 1.08     | 1.64     | 1.56     | 1.50     | 1.43     | 1.38     | 1.30      | 1.37      | 1.36      | 1.34     | 1.50       | 1.46       | 1.55       | 1.39        |
|           | LAW MILL-1                                            |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | roduction (MT)                                        | 175526      |         | 7529     | 7356     |          | 6097     | 7306     | 7539     | 6501     | 2544     | 7171     | 7158      | 7324      | 7090      | 2856     | 6595       | 7623       | 7021       | 5794        |
|           | lunning hour                                          |             |         | 24.00    | 23.50    |          | 19.92    | 23.17    | 24.00    | 20.75    | 8.25     | 22.83    | 23.08     | 24.00     | 23.00     | 9.06     | 21.25      | 24.00      | 22.25      | 18.80       |
|           | ower Consumed (KWh)                                   |             |         | 96747    | 94500    |          | 78994    | 94752.09 | 97232    | 83846    | 33216    | 91520    | 91293     | 94659     | 89554     | 36627    | 82394      | 25489      | 88281      | 74095       |
|           | roduction Rate (ton/hr)                               | 320         |         | 313.71   | 313.02   |          | 306.07   | 315.32   | 314.13   | 313,30   | 308,36   | 314.10   | 309,27    | 305.17    | 308,26    | 314.54   | 310.35     | 317.63     | 315.55     | 308.19      |
|           | pecific Power (kWh/ton)                               | 12.79       | 13.25   | 12.85    | 12.85    |          | 12.96    | 12.97    | 12.90    | 12.90    | 13.06    | 12.73    | 12.79     | 12.92     | 12.63     | 12.82    | 12.49      | 12.53      | 12.57      | 12.79       |
|           | IAW MILL-2                                            |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | roduction (MT)                                        | 192620      |         | 3345     | 4925     | 6624     | 6950     | 6393     |          | 7414     | 7405     | 4365     | 4629      |           | 7129      | 7626     | 6857       |            | 4865       | 533         |
|           | lunning hour                                          |             |         | 10.50    | 16.00    | 21.00    | 22.67    | 20.67    |          | 23.83    | 24.00    | 13.83    | 14.92     |           | 22.58     | 24.00    | 21.42      | -          | 15.17      | 1.67        |
|           | ower Consumed (KWh)                                   |             |         | 43826    | 64420    | 87346    | 90884    | 89221.46 |          | 95199    | 96697    | 56006    | 59198     |           | 90123     | 96144    | 84802      | -          | 61518      | 7221        |
|           | roduction Rate (ton/hr)                               | 324         |         | 318.57   | 307.81   | 315.43   | 306.57   | 309.29   |          | 311.12   | 308,54   | 315.62   | 310.25    |           | 315.72    | 317.75   | 320.12     | -          | 320.70     | 319.16      |
|           | idectific Power (kWh/ton)                             | 12.58       | 13.25   | 13.10    | 13.08    | 13.19    | 13.08    | 13.96    |          | 12.84    | 13.06    | 12.83    | 12.79     |           | 12.64     | 12.61    | 12.37      |            | 12.65      | 13.55       |
|           |                                                       |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | ipecific Power Raw mills (kWh/MT)                     | 12.63       |         | 12.03    | 12.94    | 13,10    | 13.02    | 13.43    | 12.90    | 12.17    | 13.03    | 12.77    | 12,70     | 12.92     | 12.64     | 12,67    | 12.43      | 12.53      | 12.60      | 12.65       |
| 4 (       | COAL MILL                                             |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            | -          | -           |
|           |                                                       | 24922       |         | 811      | 817      | 811      | 812      | 819      | 810      | 824      | 808      | 818      | 819       | 833       | 842       | 843      | 845        | 828        | 832        | 784         |
|           | Production (MT)                                       | 24922       |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | tunning hour                                          |             |         | 21.92    | 19.58    | 22.17    | 23.17    | 21.50    | 23.00    | 22.00    | 21.50    | 21.67    | 21.00     | 22.25     | 20.50     | 20.50    | 19.83      | 21.33      | 20.17      | 17.92       |
|           | ower Consumed (KWh)                                   |             |         | 30087    | 24868    | 28746    | 27743    | 28662    | 28878    | 28002    | 28560    | 27433    | 25802     | 29409     | 27305     | 26715    | 26833      | 27729      | 28102      | 24730       |
|           | roduction Rate (ton/hr)                               | 61          |         | 37.00    | 41.73    | 36.58    | 35.05    | 38.09    | 35.22    | 37.45    | 37.58    | 37.75    | 39.00     | 37.44     | 41.07     | 41.12    | 42.61      | 38.82      | 41.25      | 43.75       |
|           | ipecific Power (kWh/ton)<br>CLN & COOLER              | 34.11       |         | 37.10    | 30.44    | 35.45    | 34.17    | 35.00    | 35.65    | 33.98    | 35.35    | 33.54    | 31.50     | 35.30     | 32.43     | 31.69    | 31.75      | 33.49      | 33.78      | 31.54       |
|           | Production (MT)                                       | 224161      |         | 7355     | 7512     | 7344     | 7345     | 7346     | 7354     | 7345     | 7355     | 7343     | 7354      | 7353      | 7344      | 7345     | 7355       | 7374       | 7371       | 6888        |
|           | tunning hour                                          |             |         | 24.00    | 24.00    | 24.00    | 24.00    | 24.00    | 24.00    | 24.00    | 24.00    | 24.00    | 24.00     | 24.00     | 24.00     | 24.00    | 24.00      | 24.00      | 24.00      | 24.00       |
|           |                                                       |             |         | 114696   | 114531   | 115512   | 114650   | 114678   | 115465   | 114449   | 113012   | 112587   | 114200    | 114640    | 115403    | 114514   | 113863     | 115607     | 115022     | 104672      |
|           | Power Consumed (KWh)                                  | 101         |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            | -          | -          |             |
|           | Production Rate (ton/hr)<br>specific Power (kWh/ton)  | 303         | 21.4    | 306.46   | 304.67   | 306.00   | 306.04   | 306.08   | 306.42   | 305.04   | 306.46   | 305.96   | 306.42    | 306.38    | 306.00    | 306.04   | 305.46     | 307.25     | 307.13     | 287.00      |
|           | pecial Power (kwayton)                                | 13/44       | 44.4    | 13.39    | 13.00    | 13.73    | 13.01    | 13.91    | 13.70    | 13.30    | 13.37    | 10.01    | 13.33     | 15.50     | 13.71     | 13.39    | 13,46      | 13.00      | 13.00      | 15.20       |
|           |                                                       |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | pecific Power Clinkerization (kWh/ton clk)            | 43.59       | 47.23   | 43.21    | 42.99    | 44.05    | 42.62    | 44.50    | 43.87    | 43.44    | 43.53    | 42.83    | 42,49     | 43.60     | 42,43     | 42.77    | 42,87      | 43.07      | 43.21      | 42.90       |
| -         | ipecific Heat Consumption(Kcsl/Kg-Clinker)            | 677         | 682     | 680      | 680      | 681      | 990      | 680      | 679      | 680      | 679      | 680      | 678       | 679       | 690       | 681      | 680        | 678        | 680        | 681         |
| 6 (       | EMENT MILL-1_OPC                                      |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
| 1         | roduction (MT)                                        | 74890       |         | 1648     |          |          | 3074     | 2362     | 4601     | 4018     | 4231     | 4347     | 3609      | 1949      |           | 4997     | 5572       | 1480       | 4242       | 4812        |
|           | tunning hour                                          |             |         | 7.50     |          |          | 13.00    | 10.50    | 20.00    | 17.00    | 17.91    | 18.17    | 15.00     | 8.25      |           | 21.00    | 23.41      | 6.08       | 17.00      | 20.00       |
|           | Power Consumed (KWh)                                  |             |         | 39780    |          |          | 74090    | 59331    | 113570   | 97139.86 | 101798   | 104729   | 86480     | 45699     |           | 116495   | 127525     | 37122      | 93979      | 107882      |
|           | Production Rate (ton/hr)                              | 247         |         | 219.73   |          |          | 236.46   | 224.95   | 230.05   | 236.35   | 236.24   | 239.24   | 240.60    | 236.24    |           | 237.95   | 238.02     | 243.42     | 249.53     | 240.60      |
|           | pecific Power (kWh/ton)                               | 22.32       | 24      | 24.14    |          |          | 24.10    | 25.12    | 24.68    | 24.18    | 24.06    | 24.09    | 23.96     | 23.45     |           | 23.31    | 22.89      | 25.08      | 22.15      | 22.42       |
| 7 0       | EMENT MILL-1_PPC                                      |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
| 1         | roduction (MT)                                        | 80900       |         |          |          |          |          |          |          |          |          |          | 2718      | 4750      | 7184      | 431      |            |            | 2078       | 1157        |
| 1         | lunning hour                                          |             |         |          |          |          |          |          |          |          |          |          | 9.00      | 15.75     | 24.00     | 1.50     |            |            | 7.00       | 4.00        |
|           | ower Consumed (KWh)                                   |             |         |          |          |          |          |          |          |          |          |          | 50388     | 89708     | 135006    | 8683     |            |            | 39984      | 24134       |
|           | roduction Rate (ton/hr)                               | 310         | 19.5    |          |          |          |          |          |          |          |          |          | 302.00    | 301.59    | 299.33    | 287.33   |            |            | 296.86     | 289.25      |
|           | ipecific Power (kWh/ton)<br>2 MENT MILL-1_STRONGCRETE | 10.20       | 19.5    |          |          |          |          |          |          |          |          |          | 18.54     | 10.09     | 18.79     | 20.15    |            |            | 19.24      | 20.86       |
|           | Production (MT)                                       | 5019        |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | tunning hour                                          | 3013        |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            | -          |            | -           |
|           | ower Consumed (KWh)                                   |             |         |          |          |          |          |          |          |          |          |          |           |           |           | -        |            | -          | -          | -           |
|           | roduction Rate (ton/hr)                               | 218         |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
|           | pecific Power (kWh/ton)                               | 25.37       | 26.5    |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |
| _         |                                                       |             |         |          |          |          |          |          |          |          |          |          |           |           |           |          |            |            |            |             |

24.14

24.10

25.12

24.68

24.18 24.06 24.09 21.63

20.21

18.79

23.06

22.89

20.58

Specific Power CEMENT MILL-1 (kWh/MT)



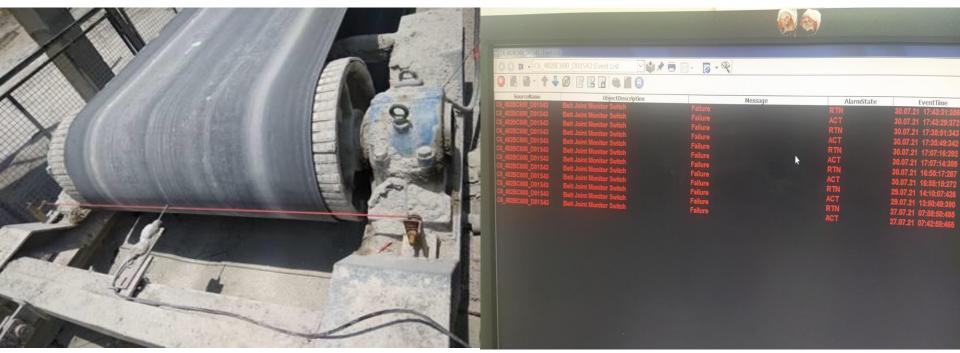
# Energy efficiency/awareness trainings

Great Place To Work. Certified APR 2021-MAR 2022

- Energy Conservation and Management, CII Hyderabad
- > Workshop on Plant optimization, FLS Delhi
- Optimisation of pyro processing system in Clinker manufacturing, NCCBM, Hyderabad
- Pyro modern technologies and optimization, NCCBM, Hyderabad



# **CEMENT** Major Projects implemented through Kaizens


Great Place To Work. Certified APR 2022-MAR 2022

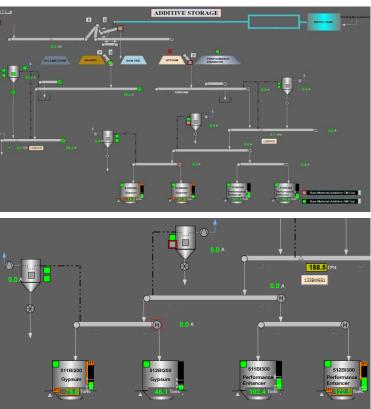
### Projects implemented through Kaizens (Workers and Supervisor level)

### 1. Belt Joint Monitoring

Sensor install for belt joint monitoring in clinker transport belt 482 BC600. After successive results installed in all major belts.






# **DRIENT** Major Projects implemented through Kaizens



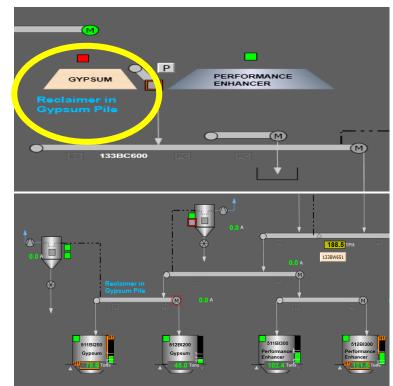
# 2. Interlocking of Gypsum & Performance Enhancer feeding system with Reclaimer in respective piles

#### Functional Team Members:

- 1. Arvind Verma (Instrumentation)
- 2. Mahantesh Mannur (Instrumentation)
- 3. Rohit Anashetty (Instrumentation)
- 4. Srikanth Rathod (Mechanical)
- 5. Shijesh KV (Mechanical)
- 6. Vinod (Civil)
- 7. Ruma Maheshwara Reddy (Process)



#### **Current Practices and conditions:**


Previously, there was no interlock in DCS for Gypsum and performance Enhancer feeding system with reclaimer in their respective pile positions. Even there was no indication at CCR to know the machine is running in which pile. CCR engineers were filling the Gypsum and Performance enhancer bins by having telephonic communication with the reclaimer operators. There were chances of incorrect material feeding to cement mills hoppers due to miscommunications or manual errors resulting into quality deviations.

#### **Modifications:**

Identified the exact position to differentiate the piles (Gypsum and Performance Enhancer) along with process & quality control teams. Fixed one pole with two magnetic switches at that particular position with the help of mechanical and civil teams. Also fixed two magnets on reclaimer to sense these magnets.

Whenever, reclaimer passes from one pile to another pile through the assigned pole, two different signals will get activated/deactivated to know the position of reclaimer. These signals are reporting directly to plant DCS. With these signals an interlock in logics of belt conveyors made to ensure correct material feeding to respective hoppers. With this, gypsum can not go into PE hopper and similarly PE can not go into gypsum hopper. After implementing this modification, the possibility of getting quality deviations due to the mixing of material (gypsum & PE) in the hoppers can be completely avoided.





Certified



### Implementation of ISO 50001







#### Certificate of Registration

FACILITIES MANAGEMENT SYSTEM - ISO 41001:2018

This is to certify that:

Orient Cement Ltd. Chittapur PO Itaga Malked Road Chittapur - Taluk Kalaburagi Dist 585 292 Karnataka India

Holds Certificate No:

FMMS 738634

and operates a Facilities Management System which complies with the requirements of ISO 41001:2018 for the following scope:

> Facility Management for the Manufacture, Packing and Supply of Clinker & Cement, and Generation & Export of Power.



#### Certificate of Registration

ENERGY MANAGEMENT SYSTEM - ISO 50001:2018

This is to certify that:

Orient Cement Ltd. Chittapur PO Itaga Malked Road Chittapur - Taluk Kalaburagi Dist 585 292 Kamataka India

Holds Certificate No:

ENMS 715352

and operates an Energy Management System which complies with the requirements of ISO 50001:2018 for the following scope:

> Mining of Limestone, Crushing, Clinkerization, Cement Grinding, Packaging & Dispatch of Cement & Clinker, utilizing Electricity, Coal & Diesel; Generation & Export of Power.

NCOTLE

Purther clarifications regarding the scope of this cartificate and the applicability of ISO 4000.2000 requirements may be obtained by consulting the organization.

For and on behalf of BSI:

Theuns Kotze, Managing Director - IMETA Assurance

Original Registration Date: 2021-06-07 Latest Revision Date: 2021-06-07

An electronic certificate can be authenticated online.

This certificate is valid only if provided original copies are in complete set.

Effective Date: 2021-06-07

Expiry Date: 2024-06-06



#### ...making excellence a habit."

Page: 1 of 1

For and on behalf of BSI:

Original Registration Date: 2019-11-08 Latest Revision Date: 2019-11-08



Chris Cheung, Head of Compliance & Risk - Asia Pacific

Effective Date: 2019-11-08 Expiry Date: 2022-11-07

Page: 1 of 1

...making excellence a habit"

This certificate was issued electronically and remains the property of IEE and is board by the conditions of contract. An electronic certificate can be authenticated online.

Primed copies can be wildered at www.bor.poble.com/ChardDirectory or talephone +81 11 2602 9000. Purther chardCastors regarding the scope of this cardCast and the applicability of ISD 50001-2018 requirements may be obtained by consulting the organization. This cardCastor is wild only if provided organization complete aid.

Information and Context: 851, Kitemark Court, Dwy Avenue, Knowlinik, Million Xieynes MKS SPR. Tel: + 44 345 000 9000 BST Avenuence UK Umited, registered in England under number 7005325 at 309 Chewick High Road, Lundon W4 4AL, UK A Nember of the BSI Group of Companies.

BSI, The HIRA Corporate Suites (A-2), Plot 1 and 2, Jshwar Nagar, Mathura Road, New Delhi 110 065. A Member of the BSI Group of Companies.

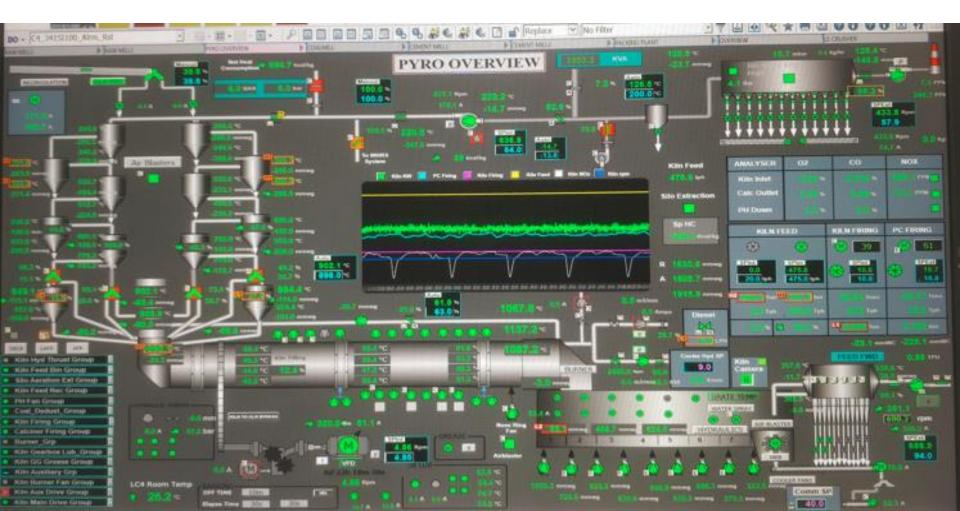
Printed copies can be validated at www.bsi-global.com/ClientDirectory or telephone +91 11 2692 9000.

This certificate was issued electronically and remains the property of BSI and is bound by the conditions of contract.



### Awards & Accolades 2020-21




# 21st National Award for Excellence in Energy Management 2020





### Major Achievements

- Great Place To Work. Certified AR 2021-MAR 202 INDIA
- ✓ One of the lowest energy consumption plant for both electrical and thermal
- ✓ Achieved highest Kiln brick lining life
- ✓ Preheater fan specific power achieved 3.2 units/MT of clinker
- ✓ Bag house fan specific power achieved 1.2 units/MT of clinker
- ✓ Preheater fan inlet temp is  $224^{\circ}$ C









: muralimohanraju.p@orientcement.com : 7829992123